2,775 research outputs found

    Polynomial algorithms for the Maximal Pairing Problem: efficient phylogenetic targeting on arbitrary trees

    Get PDF
    Background: The Maximal Pairing Problem (MPP) is the prototype of a class of combinatorial optimization problems that are of considerable interest in bioinformatics: Given an arbitrary phylogenetic tree T and weights ωxy for the paths between any two pairs of leaves (x, y), what is the collection of edge-disjoint paths between pairs of leaves that maximizes the total weight? Special cases of the MPP for binary trees and equal weights have been described previously; algorithms to solve the general MPP are still missing, however. Results: We describe a relatively simple dynamic programming algorithm for the special case of binary trees. We then show that the general case of multifurcating trees can be treated by interleaving solutions to certain auxiliary Maximum Weighted Matching problems with an extension of this dynamic programming approach, resulting in an overall polynomial-time solution of complexity (n^4 log n) w.r.t. the number n of leaves. The source code of a C implementation can be obtained under the GNU Public License from http://www.bioinf.uni-leipzig.de/Software/Targeting. For binary trees, we furthermore discuss several constrained variants of the MPP as well as a partition function approach to the probabilistic version of the MPP. Conclusions: The algorithms introduced here make it possible to solve the MPP also for large trees with high-degree vertices. This has practical relevance in the field of comparative phylogenetics and, for example, in the context of phylogenetic targeting, i.e., data collection with resource limitations.Human Evolutionary Biolog

    Artificial Intelligence Algorithms to Diagnose Glaucoma and Detect Glaucoma Progression: Translation to Clinical Practice

    Get PDF
    Purpose: This concise review aims to explore the potential for the clinical implementation of artificial intelligence (AI) strategies for detecting glaucoma and monitoring glaucoma progression. / Methods: Nonsystematic literature review using the search combinations "Artificial Intelligence," "Deep Learning," "Machine Learning," "Neural Networks," "Bayesian Networks," "Glaucoma Diagnosis," and "Glaucoma Progression." Information on sensitivity and specificity regarding glaucoma diagnosis and progression analysis as well as methodological details were extracted. / Results: Numerous AI strategies provide promising levels of specificity and sensitivity for structural (e.g. optical coherence tomography [OCT] imaging, fundus photography) and functional (visual field [VF] testing) test modalities used for the detection of glaucoma. Area under receiver operating curve (AROC) values of > 0.90 were achieved with every modality. Combining structural and functional inputs has been shown to even more improve the diagnostic ability. Regarding glaucoma progression, AI strategies can detect progression earlier than conventional methods or potentially from one single VF test. / Conclusions: AI algorithms applied to fundus photographs for screening purposes may provide good results using a simple and widely accessible test. However, for patients who are likely to have glaucoma more sophisticated methods should be used including data from OCT and perimetry. Outputs may serve as an adjunct to assist clinical decision making, whereas also enhancing the efficiency, productivity, and quality of the delivery of glaucoma care. Patients with diagnosed glaucoma may benefit from future algorithms to evaluate their risk of progression. Challenges are yet to be overcome, including the external validity of AI strategies, a move from a "black box" toward "explainable AI," and likely regulatory hurdles. However, it is clear that AI can enhance the role of specialist clinicians and will inevitably shape the future of the delivery of glaucoma care to the next generation. / Translational Relevance: The promising levels of diagnostic accuracy reported by AI strategies across the modalities used in clinical practice for glaucoma detection can pave the way for the development of reliable models appropriate for their translation into clinical practice. Future incorporation of AI into healthcare models may help address the current limitations of access and timely management of patients with glaucoma across the world

    Methods of Isolation and Analysis of TREG Immune Infiltrates from Injured and Dystrophic Skeletal Muscle

    Get PDF
    The immune infiltrate present in acutely injured or dystrophic skeletal muscle has been shown to play an important role in the process of muscle regeneration. Our work has described, for the first time, muscle regulatory T cells (Tregs), a unique population in phenotype and function capable of promoting skeletal muscle repair. Herein, we describe the methods we have optimized to study muscle Tregs, including their isolation from injured muscle, immuno-labeling for analysis/separation by flow cytometry, and measurement of their proliferation status

    Latest Results from the Heidelberg-Moscow Double Beta Decay Experiment

    Get PDF
    New results for the double beta decay of 76Ge are presented. They are extracted from Data obtained with the HEIDELBERG-MOSCOW, which operates five enriched 76Ge detectors in an extreme low-level environment in the GRAN SASSO. The two neutrino accompanied double beta decay is evaluated for the first time for all five detectors with a statistical significance of 47.7 kg y resulting in a half life of (T_(1/2))^(2nu) = [1.55 +- 0.01 (stat) (+0.19) (-0.15) (syst)] x 10^(21) years. The lower limit on the half-life of the 0nu beta-beta decay obtained with pulse shape analysis is (T_(1/2))^(0_nu) > 1.9 x 10^(25) [3.1 x 10^(25)] years with 90% C.L. (68% C.L.) (with 35.5 kg y). This results in an upper limit of the effective Majorana neutrino mass of 0.35 eV (0.27 eV). No evidence for a Majoron emitting decay mode or for the neutrinoless mode is observed.Comment: 14 pages, revtex, 6 figures, Talk was presented at third International Conference ' Dark Matter in Astro and Particle Physics' - DARK2000, to be publ. in Proc. of DARK2000, Springer (2000). Please look into our HEIDELBERG Non-Accelerator Particle Physics group home page: http://www.mpi-hd.mpg.de/non_acc

    Continuous, Semi-discrete, and Fully Discretized Navier-Stokes Equations

    Full text link
    The Navier--Stokes equations are commonly used to model and to simulate flow phenomena. We introduce the basic equations and discuss the standard methods for the spatial and temporal discretization. We analyse the semi-discrete equations -- a semi-explicit nonlinear DAE -- in terms of the strangeness index and quantify the numerical difficulties in the fully discrete schemes, that are induced by the strangeness of the system. By analyzing the Kronecker index of the difference-algebraic equations, that represent commonly and successfully used time stepping schemes for the Navier--Stokes equations, we show that those time-integration schemes factually remove the strangeness. The theoretical considerations are backed and illustrated by numerical examples.Comment: 28 pages, 2 figure, code available under DOI: 10.5281/zenodo.998909, https://doi.org/10.5281/zenodo.99890

    Disfluency in dialogue:an intentional signal from the speaker?

    Get PDF
    Disfluency is a characteristic feature of spontaneous human speech, commonly seen as a consequence of problems with production. However, the question remains open as to why speakers are disfluent: Is it a mechanical by-product of planning difficulty, or do speakers use disfluency in dialogue to manage listeners' expectations? To address this question, we present two experiments investigating the production of disfluency in monologue and dialogue situations. Dialogue affected the linguistic choices made by participants, who aligned on referring expressions by choosing less frequent names for ambiguous images where those names had previously been mentioned. However, participants were no more disfluent in dialogue than in monologue situations, and the distribution of types of disfluency used remained constant. Our evidence rules out at least a straightforward interpretation of the view that disfluencies are an intentional signal in dialogue. © 2012 Psychonomic Society, Inc

    Complete experimental toolbox for alignment-free quantum communication

    Get PDF
    Quantum communication employs the counter-intuitive features of quantum physics to perform tasks that are im- possible in the classical world. It is crucial for testing the foundations of quantum theory and promises to rev- olutionize our information and communication technolo- gies. However, for two or more parties to execute even the simplest quantum transmission, they must establish, and maintain, a shared reference frame. This introduces a considerable overhead in communication resources, par- ticularly if the parties are in motion or rotating relative to each other. We experimentally demonstrate how to circumvent this problem with the efficient transmission of quantum information encoded in rotationally invariant states of single photons. By developing a complete toolbox for the efficient encoding and decoding of quantum infor- mation in such photonic qubits, we demonstrate the fea- sibility of alignment-free quantum key-distribution, and perform a proof-of-principle alignment-free entanglement distribution and violation of a Bell inequality. Our scheme should find applications in fundamental tests of quantum mechanics and satellite-based quantum communication.Comment: Main manuscript: 7 pages, 3 figures; Supplementary Information: 7 pages, 3 figure

    Caveolin-1 protects B6129 mice against Helicobacter pylori gastritis.

    Get PDF
    Caveolin-1 (Cav1) is a scaffold protein and pathogen receptor in the mucosa of the gastrointestinal tract. Chronic infection of gastric epithelial cells by Helicobacter pylori (H. pylori) is a major risk factor for human gastric cancer (GC) where Cav1 is frequently down-regulated. However, the function of Cav1 in H. pylori infection and pathogenesis of GC remained unknown. We show here that Cav1-deficient mice, infected for 11 months with the CagA-delivery deficient H. pylori strain SS1, developed more severe gastritis and tissue damage, including loss of parietal cells and foveolar hyperplasia, and displayed lower colonisation of the gastric mucosa than wild-type B6129 littermates. Cav1-null mice showed enhanced infiltration of macrophages and B-cells and secretion of chemokines (RANTES) but had reduced levels of CD25+ regulatory T-cells. Cav1-deficient human GC cells (AGS), infected with the CagA-delivery proficient H. pylori strain G27, were more sensitive to CagA-related cytoskeletal stress morphologies ("humming bird") compared to AGS cells stably transfected with Cav1 (AGS/Cav1). Infection of AGS/Cav1 cells triggered the recruitment of p120 RhoGTPase-activating protein/deleted in liver cancer-1 (p120RhoGAP/DLC1) to Cav1 and counteracted CagA-induced cytoskeletal rearrangements. In human GC cell lines (MKN45, N87) and mouse stomach tissue, H. pylori down-regulated endogenous expression of Cav1 independently of CagA. Mechanistically, H. pylori activated sterol-responsive element-binding protein-1 (SREBP1) to repress transcription of the human Cav1 gene from sterol-responsive elements (SREs) in the proximal Cav1 promoter. These data suggested a protective role of Cav1 against H. pylori-induced inflammation and tissue damage. We propose that H. pylori exploits down-regulation of Cav1 to subvert the host's immune response and to promote signalling of its virulence factors in host cells

    The Genomic Signature of Crop-Wild Introgression in Maize

    Get PDF
    The evolutionary significance of hybridization and subsequent introgression has long been appreciated, but evaluation of the genome-wide effects of these phenomena has only recently become possible. Crop-wild study systems represent ideal opportunities to examine evolution through hybridization. For example, maize and the conspecific wild teosinte Zea mays ssp. mexicana, (hereafter, mexicana) are known to hybridize in the fields of highland Mexico. Despite widespread evidence of gene flow, maize and mexicana maintain distinct morphologies and have done so in sympatry for thousands of years. Neither the genomic extent nor the evolutionary importance of introgression between these taxa is understood. In this study we assessed patterns of genome-wide introgression based on 39,029 single nucleotide polymorphisms genotyped in 189 individuals from nine sympatric maize-mexicana populations and reference allopatric populations. While portions of the maize and mexicana genomes were particularly resistant to introgression (notably near known cross-incompatibility and domestication loci), we detected widespread evidence for introgression in both directions of gene flow. Through further characterization of these regions and preliminary growth chamber experiments, we found evidence suggestive of the incorporation of adaptive mexicana alleles into maize during its expansion to the highlands of central Mexico. In contrast, very little evidence was found for adaptive introgression from maize to mexicana. The methods we have applied here can be replicated widely, and such analyses have the potential to greatly informing our understanding of evolution through introgressive hybridization. Crop species, due to their exceptional genomic resources and frequent histories of spread into sympatry with relatives, should be particularly influential in these studies
    corecore